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Abstract. The relaxation of electric birefringence is experimentally investigated in three 
distinct systems: critical binary mixtures, polydisperse micellar solutions and dilute poly- 
electrolyte solutions. The asymptotic behaviour is shown to be consistent with a stretched- 
exponential form exp[- ( r /~)" ] .  Most of the data are quantitatively explained by a simple 
model of parallel relaxation of many independent processes characterized by a wide dis- 
tribution of sizes. 

1. Introduction 

In the past few years a great variety of experimental data for dielectric, magnetic, NMR, 
optical and mechanical relaxation phenomena in complex random systems [ 1-1 11 have 
been shown to obey, at least asymptotically, a behaviour of the type 

which is known as a stretched exponential (SE). The similarity of relaxation processes in 
rather different random systems, such as glasses, spin-glasses, polymers, viscous fluids, 
disordered dielectrics and complex liquids, is striking and might indicate a common 
origin of such behaviour. We review in this paper our experimental work concerning 
the relaxation of electric-field-induced birefringence in critical binary mixtures [8, 121, 
micellar [ 101 and polyelectrolyte [ 111 solutions, placing particular emphasis on the latter 
system. We have found in all the investigated systems an asymptotic SE decay. A simple 
model based on the 'polydispersity' of the system can explain quantitatively most of the 
experimental results. 

R(t) = exp[-(t/t)"] with 0 < LY S 1 (1) 

2. Stretched-exponential behaviour 

The experimental results discussed in this paper are interpreted using a model which 
describes the overall relaxation of the system as a weighted superposition of many 
independent processes. The relaxation function B(t )  is written as 

t 
B(t )  = lox P(m)S(m) enp( - -1 d m  

t (m> 
where m is the parameter (typically a size) which characterizes each individual process, 
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Figure 1. The normalized relaxation func- 
tion R(t) obtained in a TEB experiment on 
a polyelectrolyte solution. The upper plot 
is on a linear scale, the intermediate plot 
presents the same data on a semiloga- 
rithmic scale, and the lower plot presents 

P(m) is the probability density of m, S(m) is a signal function describing the contribution 
of each process to the observed signal, and t ( m )  is the time constant of the exponential 
relaxation of process m. If we make the assumptions 

P(m) = exp( -AmP) S(m) = m' t ( m )  = mq (3) 
where the exponentsp, q ,  r a re  positive numbers and A is a constant, and we substitute 
(3) into (2), we can find an approximate solution to the integral by using the saddle-point 
approximation. The result is [12] 

B(t)  = t'exp[-(t/z)"] (4) 

y = (2r + 2 - p ) / ( 2 p  + 2q). ( 5 )  

where 

= P / ( P  + 4 )  
In our discussion of the experimental data, we shall neglect the term t'which gives only 
logarithmic corrections to the dominant SE behaviour. 

We show in figure 1 a typical relaxation curve following an electric-field rectangular 
pulse which terminates at t = 0. With B(t) the observed birefringence at timet, we define 
a normalized relaxation function R(t )  = B(t)/B(O). The upper plot presents the data on 
a linear scale. The intermediate plot presents the same data on a semilogarithmic scale: 
the decay is clearly non-exponential and shows a very long tail. In this plot the broken 
line corresponds to an exponential decay having the same time constant t as the SE 
decay. The lower plot presents -ln[R(t)] versus t / t  on a log-log scale. The linearity of 
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the plot indicates a SE decay, the stretch exponent CY being given by the slope of the 
straight line. 

3. Experimental details 

The transient electric birefringence (TEB) experiment consists of applying a rectangular 
pulse of electric field to the sample and observing the associated pulse of induced 
birefringence. We have focused our attention on the decay of the induced birefringence 
after removal of the applied electric field. A detailed description of our apparatus can 
be found in [13]. Here, we simply recall that the set-up includes a quarter-wave plate 
inserted between the Kerr cell and the analyser. For the experiments described in this 
article the optical path length of the cell is 60 mm, and the electrodes have a separation 
of 2-3 mm. Voltage pulses with heights of 0.2-5 kV cm-' and durations of 20-500 ,us 
were used. The output of the photodetector is sent to a transient digitizer and averager, 
the decay being sampled over 1000 points, with typically the last 100 points used to 
evaluate the baseline to an accuracy of better than 0.2%. The overall response time of 
the apparatus is less than 1 ps. 

The Kerr constant B is defined as B = An/AEZ, where An is the induced anisotropy 
in the refractive index in stationary conditions, E is the applied electric field and A is the 
wavelength of the probing light. For all the experiments described in this paper, we have 
verified that the shape of the birefringence transient does not depend on the applied 
field and that An is proportional to the square of the field. 

4. Critical binary mixtures 

We have studied two critical binary mixtures, both showing a lower consolute boundary: 
water and 2,6-lutidine [8], and water and 2-butoxyethanol [14]. We briefly discuss the 
results obtained with the latter system which has a critical point at 49.8 "C and contains 
26 wt% butoxyethanol. Temperature control within the thermostatted cell was main- 
tained to 50.01 "C. By fixing the concentration at the critical value, we have studied the 
temperature dependence of the electric birefringence measurements in a temperature 
range of 10 "C below T,. We do not repeat here the description of the static data [12], 
but we limit our discussion to the dynamic behaviour. We have found indeed that the 
relaxation function is not exponential and shows asymptotically a SE behaviour. By 
making a log-log plot of the type shown in the lower part of figure 1, we find that the 
linear behaviour is followed over a larger and larger time range as Tapproaches T,. The 
value ofthestretchexponent cuis0.40 2 0.05, independentlyof the temperature distance 
from the critical point, for both the investigated critical systems. The time constant t 
shows a power-law divergence as a function of the reduced temperature. A fit with the 
law t = (T ,  - T)-Y yields y I: 1.8 for both systems. 

To describe the observed birefringence transients we have used a dynamic droplet 
model [SI, suggesting that the spectrum of relaxation times arises from the distribution 
of sizes of order-parameter fluctuations in the critical fluid. These fluctuations are 
distorted by the application of an electric field, in the same way as it occurs with aerosol 
droplets, and will relax back to equilibrium diffusively. If we assume that the role of the 
variable m in equation (2) is taken, in the critical fluid, by the size of the critical 
fluctuation, we can take, consistently with the static droplet model, a Gaussian prob- 
ability density for P(m) which means an exponent p = 2. The observed dependence of 
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FigureZ. The stretchexponent cuplotted as 
a function of the amphiphile concentration 
for a solution of polydisperse rod-like 0.5 1.0 1.5 2.0 2.5 3.0 

CCPyCl (mM) micelles. 

t on T, - Tis consistent with the choice q = 3, if we note that the measured exponent y 
is nearly 3 v ,  v being the critical exponent for the divergence of the correlation length. 
Inserting the values chosen for p and q into equation ( 5 ) ,  we derive the prediction a = 
0.4, in very good agreement with the experimental results. 

5. Polydisperse micellar solutions 

The interpretation of the results obtained with the critical systems suggests that any 
polydisperse system satisfying some simple general criteria (additivity of contributions, 
exponential form of the size distribution P(m), power-law dependence of z(m) on m) 
might show a SE relaxation. In order to test this prediction we have performed a 
TEB experiment on an appropriately selected colloidal solution, namely a polydisperse 
solution of rod-like micelles. It is known that ionic amphiphile solutions undergo, upon 
addition of salt, a transition from spherical to polydisperse cylindrical micelles. Since 
the conductivity of the solution must be very low in an electric birefringence experiment, 
it is necessary to choose a system which forms elongated micelles at very low con- 
centrations (below a few mM) of both ionic amphiphile and salt. The system we have 
chosen was previously investigated by Hoffmann and co-workers [15], and consists of 
water solutions of cetylpyridinium chloride (CPyCl) with the addition of sodium 
salicylate (Nasal). We have performed measurements at 3 mM Nasal, in the amphiphile 
concentration range 0.2 mM < c < 3 mM (figure 2). We have found that, at all the 
investigated concentrations, the relaxation of induced electric birefringence follows 
asymptotically a SE behaviour. Typically, by making a plot of R(t)  of the type shown in 
the lower part of figure 1, a linear behaviour is observed over more than one decade in 
the reduced variable t / t .  The slope of the best-fit straight line is reported in figure 2 as 
a function of the amphiphile concentration. We see that w grows from about 0.24 at 
concentrations below 0.5 mM to about 0.5 for c larger than 1 mM. We have calculated 
the entanglement concentration c* by using for the average rod length the experimental 
data of [15]. We find that c* = 0.6 mM. 

The low-concentration results can be interpreted in the following way. On the 
assumption that interparticle interactions are negligible, B(t)  can be written as a sum of 
individual-particle responses and can be expressed as equation (2) with m here playing 
the role of the micelle aggregation number. The statistical model for the sphere-to- 
rod transition [I61 predicts a probability distribution P(m) = A exp(-Am), where the 
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Figure 3. Relaxation function obtained with NaPSS solutions: curve a ,  M = 1 X lo’, 
I = 0.05 mM. c = 5 x lo-’  mg cm-’, a = 1;  curve b, M = 4 x 10’. I = 0.4 mM, c = 1 x 
10-’mg cm-’. a = 0.7; curve c. M = 1.2 x 10‘. I = 1 mM, c = 2.5 X 10-’mg cm-3, a = 
0.43. 

constant A depends on the specificity of the system, on the amphiphile and salt con- 
centrations and on the temperature. The model used for the micellar shape is a cylinder 
of fixed diameter and variable length terminated with hemispherical caps. If we call mo 
the minimum aggregation number (corresponding to a spherical shape), we can say that, 
form % mo, m is proportional to the length of the cylindrical micelle. If the rods have 
sufficient rigidity, T(m) represents essentially a rotational diffusion time. As such, it 
should be proportional to the cube of the rod length. This gives q = 3 .  By substituting 
the values ofp and q into equation ( 5 ) ,  we obtain (Y = 0.25, in excellent agreement with 
the experimental result found in the dilute regime. It is possible that the analysis in terms 
of SE behaviour might represent a rather general and powerful method of characterizing 
relaxation phenomena in polydisperse systems, with (Y containing direct information on 
the shape of the size distribution function. 

We see from figure 2 that (Y departs significantly from 0.25 when c becomes larger 
than c*. This is expected because, when entanglement is present, it is meaningless to 
describe the dynamic response of the system as a linear superposition of the responses 
of individual micelles, one should instead use a description in terms of collective modes. 
It is, in any case, remarkable that the decay is asymptotically SE even for the entangled 
system. If we take a continuous distribution of relaxation times, B(t)  can be written as 

where W (  T ’ )  is an appropriate weighting function. By applying to equation (6) the same 
approach used for equation (2), we find that the result a =  0.5 implies a weighting 
function of the type W ( a ’ )  = exp(-t’/z). 

6. Dilute polyelectrolyte solution 

We have performedTEB measurements on aqueous solutions of the linear polyelectrolyte 
sodium polystyrene sulphonate (NaPSS) [ll]. Previous studies of the same system by 



SA74 V Degiorgio et a1 

Mandel and co-workers [17] have shown that the decay of birefringence after the 
application of an electric field pulse is non-exponential and can be fitted with the 
superposition of three or four exponentials. We have repeated the experiment with the 
aim of testing a different interpretation of those experimental data. 

NaPSS presents a large specific Kerr constant for two reasons: there is a large 
contribution to the electric polarizability coming from the counterion cloud, and the 
monomer has a strong optical anisotropy. Our samples consisted of water solutions of 
nearly monodisperse (M,/M, G 1.1) NaPSS obtained as molecular weight standards 
from Pressure Chemical Co.,  Pittsburgh, PA, USA, and used without further puri- 
fication. The five different molecular weights used are M = 1.0 x lo5, 2.0 x lo5, 
4.0 x lo5, 7.8 X 10' and 1.2 X lo6. The ionic strength of the solution was varied by the 
addition of NaCl in the concentration range 0.2-4 mM. All solutions were prepared with 
deionized water and salt of analytical grade. The polyelectrolyte concentration c was 
chosen so as to explore only the dilute regime, in which the polymer concentration is 
smaller than the entanglement concentration c* [18], where c* = M / N , R i ,  R,  being 
the radius of gyration. 

All the reported data refer to measurements performed in the Kerr regime, i.e. the 
regime in which the induced birefringence is proportional to the square of the applied 
field. We have verified that the shape of the birefringence pulse does not depend on the 
field strength and on the pulse duration T (provided that Tis not small in comparison 
with the relaxation time z) in the Kerr regime. An important feature of the Kerr regime 
is that it is a small perturbation regime, so that both static and dynamic behaviour of the 
polymer solution are controlled by the properties of the unperturbed system. 

Figure 3 shows R(t) for three different polymer solutions, plotted as a function of the 
scaled time t / z ( L ,  I )  where t ( L ,  1) is the fitted relaxation time for each polymer system, 
varying both with the extended polymer length L and with the ionic strength 1 of the 
solution. All the three relaxation functions are very well described by a SE form, except, 
perhaps, for the initial part, as can be seen from the linear behaviour of the plots in figure 
3. More generally, we have found that, for all the investigated NaPSS solutions, the 
relaxation function follows SE behaviour. Table 1 presents the best fit values of LY and z 
for solutions of different polymer lengths and/or different ionic strengths. We have also 
reported in table 1 the average relaxation time (z) calculated as 

(z) = jox R(t)  dt. (7) 

Note that, for a pure SE, (z) = &I-( a- ' )z ,  r being the gamma function, and this relation 
is confirmed by our data within experimental error. 

We see from table 1 that LY is a decreasing function of both polymer length and ionic 
strength of the solution. We find that LY is about 1 for the shortest polymer at very low 
ionic strengths and saturates to 0.44 k 0.02 for the longest polymer at an ionic strength 
of around 2 mM. 

The non-exponential dynamics of flexible chains are usually discussed in terms of a 
discrete set of relaxation modes [18, 191. Although the experimental relaxation function 
can be fitted very well by a superposition of three or four exponentials, it is not easy to 
understand the meaning of the fitting parameters and to make a connection with theory. 
We propose instead the following interpretation. Following [20], we note that the 
amplitude of the electric birefringence response of a single chain is a function of its end- 
to-end distance R. In considering a dilute solution, we may imagine writing the relaxation 



Relaxation of birefringence in complex liquids SA75 

Table 1. The time constants and the stretch exponent obtained with different molecular 
weights of NaPSS at various ionic strengths and polymer concentrations. 

I C t (t) 
10-3M (mM) ( m g ~ m - ~ )  (p) (p) a 

100 
100 

200 
200 
200 
200 
200 

400 
400 
400 
400 
400 

780 
780 
780 
780 
780 

1200 
1200 
1200 
1200 
1200 

0.05 0.05 
4.00 0.10 

0.20 0.01 
0.40 0.02 
0.70 0.04 
1.20 0.06 
2.00 0.10 

0.2 0.005 
0.4 0.01 
0.7 0.02 
1.2 0.03 
2 0.04 

0.2 0.005 
0.4 0.01 
0.7 0.02 
1.2 0.03 
2 0.05 

0.2 0.005 
0.4 0.01 
0.7 0.02 
0.2 0.03 
2 0.05 

6.5 
2.5 

27.0 
22.0 
14.8 
11.0 
7.5 

99 
56 
48 
32 
31 

137 
76 
57 
61 
52 

176 
132 
90 
88 
65 

6.5 
2.8 

29.0 
23.0 
16 
13 
9 

128 
80 
66 
46 
45 

22 1 
127 
111 
124 
110 

367 
279 
23 1 
217 
150 

1 .oo 
0.80 

0.86 
0.82 
0.80 
0.76 
0.70 

0.80 
0.70 
0.68 
0.64 
0.62 

0.56 
0.52 
0.51 
0.47 
0.47 

0.48 
0.47 
0.45 
0.44 
0.44 

of birefringence B(t)  as a sum of individual-chain responses, weighted by the probability 
density P(R)  of the fluctuating quantity R:  

where S(R)  is some signal function and t ( R )  is the relaxation time appropriate to a chain 
with end-to-end distance R .  

Since the shape of P(R)  is known only the limit case in which the extended polymer 
length L is much larger than the persistence length L,, we first discuss the situation 
L/L,  * 1. For a non-self-avoiding polymer, P(R)  is Gaussian, P(R) = exp[ - (R/R,)2] ,  
where R, scales as For real polymers in good solvents, where excluded-volume 
constraints swell the chains from their Gaussian size, it has been demonstrated that P(R) 
also decays as the exponential of a power of R ,  

where now S = 1/(1 - v )  is given in terms of the universal exponent v = 0.59 appro- 
priate to a self-avoiding walk, and the prefactor f ( R )  varies as some power of R.  From 
our data and other studies [17] we estimate a power-law dependence of S(R)  on R ,  
S (R)  = R', with r = 1. Finally, we treat z ( R )  as a rotational relaxation time: t ( R )  -- R4, 
with q = 3. By using equation (5), we can express cy as cy = 1/[1 + q ( l  - v)]. Thus, in 
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Figure4. Experimental stretch exponent CY 

as a function of the ratio of polymer length 
to persistence length, for various mol- 
ecular weights of polymer and ionic 
strengths. 

Figure 5.  Relaxation time (t) as a function 
of the estimated radius of gyration of the 
polyelectrolyte. The line indicates a 
power-law fit with an exponent of 
3.0 f 0.2. 

the fully developed self-avoiding limit, the polymer relaxation is characterized by a 
stretched exponential form with a universal value of the stretch exponent a, itself 
expressed in terms of static and dynamic critical exponents. By using the numerical 
values of v and q ,  we obtain a = 0.45. The measured asymptotic value of the stretch 
exponent in the limit L / L ,  B 1 is seen in table 1 (see also figure 4) to be in excellent 
agreement with this prediction. 

The behaviour of the persistence length of polyelectrolytes as a function of the ionic 
strength is not clearly understood. The simple scaling formula proposed for very-low- 
ionic-strength solutions [21] does not seem adequate to describe the experimental results 
[22], although one should note that L,  is not measured directly but rather derived from 
the experimental data by using models which might also be questionable. We have 
estimated the persistence length for NaPSS by extrapolating to our conditions the data 
discussed by Tricot [22]. The behaviour of the exponent a as a function of L/L ,  is shown 
in figure 4. Presented in this way, we see that the stretch exponent depends on polymer 
length and ionic strength only through the ratio L/L,. Once L,  is given, the gyration 
radius can be estimated from the scaling law [21]: R, = L o . 6 ( L p / ~ ) o . 2 ,  with K the inverse 
screening length, which is rigorously applicable only in the limit L / L p  S 1, or by a slightly 
more complicated expression [21] valid for finite L/L,. Figure 5 shows the experimental 
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Table 2. Calculated values of entanglement concentration c * ,  persistence length L,, and 
radius R ,  of gyration of NaPSS solutions. The empirical formula used for L,  is Lp '  = 
0.02 + 0.0258 I"*, with L,  in nanometres. 

I C c* L,  R, 
10-'M (mM) ( m g ~ m - ~ )  (mgcm-') (nm) (nm) 

100 
100 

200 
200 
200 
200 
200 

400 
400 
400 
400 
400 

780 
780 
780 
780 
780 

1200 
1200 
1200 
1200 
1200 

0.05 0.05 
4 0.10 

0.2 0.01 
0.4 0.02 
0.7 0.04 
0.2 0.06 
2 0.10 

0.2 0.005 
0.4 0.01 
0.7 0.02 
0.2 0.03 
2 0.04 

0.2 0.005 
0.4 0.01 
0.7 0.02 
0.2 0.03 
2 0.05 

0.2 0.005 
0.4 0.01 
0.7 0.02 
1.2 0.03 
2 0.05 

2.4 
3.9 

0.7 
1 .0 
1.3 
1.7 
2.2 

0.4 
0.5 
0.7 
0.9 
1.2 

0.2 
0.3 
0.4 
0.5 
0.6 

0.22 
0.34 
0.39 
0.43 
0.46 

38.8 
14.0 

31.4 
27.2 
23.7 
20.4 
17.4 

31.4 
27.2 
23.7 
20.4 
17.4 

31.4 
27.2 
23.7 
20.4 
17.4 

31.4 
27.2 
23.7 
20.4 
17.4 

124.5 
20.8 

47.4 
42.3 
39.1 
35.9 
33.0 

72.6 
65.5 
60.1 
55.2 
50.8 

109.4 
98.8 
90.6 
83.2 
76.7 

142.6 
128.8 
118.1 
108.5 
99.9 

values of (z) plotted versus R,. The data are consistent with the power law ( r )  == R I ,  
with q = 3.0 t 0.2. We have computed from R, the entanglement concentration c* in 
order to verify that the condition c c* was verified for all our data. The calculated c*, 
together with L,  and R, is reported in table 2. 

As a conclusion, our model predicts a SE decay with the correct stretch exponent in 
the limit of a long flexible chain. In the opposite extreme ( L / L ,  of order unity), the 
macromolecule is rather stiff, with a narrow P(R), and consequently R(t) is an 
exponential ( a  = 1). The fact that R(t)  appears to be a SE even at intermediate values of 
the ratio L / L ,  might indicate that P(R) presents a rapidly decaying tail of the type 
exp( -ARp),  withp 2 6. In order to derive the dependence of a o n  L/L,, we would need 
to know the shape of P(R) for a semiflexible chain. 

7. Conclusions 

We have studied three distinct systems: 

(i) critical binary mixtures, 
(ii) polydisperse micellar solutions, 
(iii) dilute polyelectrolyte solutions, 
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presenting as a common feature a wide distribution of characteristic sizes. We find in all 
cases a SE relaxation of electric birefringence. The results are explained by a simple 
model which is based on rather general assumptions. The stretch exponent cu is related 
to the static exponent p ,  characterizing the size probability distribution, and to the 
dynamic exponent q ,  characterizing the power-law dependence of the relaxation time 
on size. In the case of TEB experiments, the technique probes rotational diffusion, i.e. 
q = 3. This means that the measurement of cugives direct information on the exponent p .  
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